SnowPro Advanced: Data Engineer Exam Guide

INTRODUCING SNOWFLAKE TRAINING FUNDS ➤  Learn more HERE. To purchase, contact us.  COVID-19 UPDATES ➤   Instructor-led classes will be delivered via virtual classroom only.

SnowPro Advanced: Data Engineer Exam Guide


The SnowPro Advanced: Data Engineer Certification  Exam  will test advanced knowledge and skills used to apply comprehensive data engineering principles using Snowflake. 


This certification will test the ability to:

  • Source data from Data Lakes, APIs, and on-premise 

  • Transform, replicate, and share data across cloud platforms

  • Design end-to-end near real-time streams 

  • Design scalable compute solutions for DE workloads

  • Evaluate performance metrics 



2+ years of data engineering experience, including practical experience using Snowflake as a DE; Candidates should have a working knowledge of Restful APIs, SQL, semi-structured datasets, and cloud native concepts.  Programming experience is a plus. 

Target Audience: 

  • Data Engineers 



Number of Questions: 65

Unscored Content: Exams may include unscored items to gather statistical information. These items are not identified on the form and do not affect your score, and additional time is factored into account for this content.

Question Types:

  • Multiple Select
  • Multiple Choice

Time Limit: 115 minutes

Languages: English 

Registration Fee: $375 USD

Passing Score: 750+ on Scaled Scoring from 0-1000

Delivery Options:

  1. Online Proctoring - Webassessor
  2. Onsite Procoring - Kryterion Testing Centers

Prerequisites: SnowPro Core Certified


Click here for information on scheduling your exam. 





This exam guide includes test domains, weightings, and objectives. It is not a comprehensive listing of all the content that will be presented on this examination. The table below lists the main content domains and their weighting ranges. 



Percentage of Exam Questions

Data Movement


Performance Optimization


Storage and Data Protection




Data Transformation

15-20 %


1.0 Domain: Data Movement

1.1 Given a data set, load data into Snowflake. 

  • Outline considerations for data loading

  • Define data loading features and potential impact

1.2 Ingest data of various formats through the mechanics of Snowflake. 

  • Required data formats

  • Outline Stages


1.3 Troubleshoot data ingestion. 


1.4 Design, build, and troubleshoot continuous data pipelines. 

  • Design a data pipeline that forces uniqueness but is not unique.

  • Stages 

  • Tasks

  • Streams

  • Snowpipe

  • Auto ingest vs. Rest API


1.5 Analyze and differentiate types of data pipelines.


1.6 Install, configure, and use connectors to connect to Snowflake. 


1.7 Design and build data sharing solutions. 

  • Implement a data share

  • Create a secure view

  • Implement row level filtering


1.8 Outline when to use an External Table and define how they work.

  • Partitioning external tables

  • Materialized views

  • Partitioned data unloading 

2.0 Domain: Performance Optimization

2.1 Troubleshoot underperforming queries. 

  • Identify underperforming queries

  • Outline telemetry around the operation

  • Increase efficiency

  • Identify the root cause


2.2 Given a scenario, configure a solution for the best performance.

  • Scale out vs. scale in

  • Cluster vs. increase warehouse size

  • Query complexity

  • Micro partitions and the impact of clustering

  • Materialized views

  • Search optimization


2.3 Outline and use caching features.


2.4 Monitor continuous data pipelines.

  • Snowpipe

  • Stages 

  • Tasks

  • Streams



3.0 Domain: Storage & Data Protection  

3.1 Implement data recovery features in Snowflake. 

  • Time Travel

  • Fail-safe


3.2  Outline the impact of Streams on Time Travel. 


3.3   Use System Functions to analyze Micro-partitions. 

  • Clustering depth

  • Cluster keys


3.4  Use Time Travel and Cloning to create new development environments.

  • Backup databases

  • Test changes before deployment

  • Rollback  

4.0 Domain: Security  

4.1 Outline Snowflake security principles.  

  • Authentication methods (Single Sign On, Key Authentication, Username/Password, MFA)

  • Role Based Access Control (RBAC)


4.2  Outline the system defined roles and when they should be applied. 

  • The purpose of each of the system defined roles including best practices usage in each case.

  • The primary differences between SECURITYADMIN and USERADMIN roles

  • The difference between the purpose and usage of the USERADMIN/SECURITYADMIN roles and SYSADMIN.


4.3  Outline Column Level Security. 

  • Explain the options available to support column level security including dynamic data masking and external tokenization

  • DDL required to manage dynamic data masking

  • Methods and best practices for creating and applying masking policies on data

5.0 Domain: Data Transformation

5.1 Define User-Defined Functions (UDFs) and outline how to use them.

  • Secure UDFs

  • SQL UDFs

  • JavaScript UDFs

  • Returning table value vs. scalar value


5.2 Define and create External Functions.  

  • Secure external functions


5.3 Design, Build, and Leverage Stored Procedures. 

  • Transaction management 


5.4 Handle and transform semi-structured data. 

  • Traverse and transform semi-structured data to structured data

  • Transform structured to semi-structured data


5.5 Outline different data schemas.

  • Star

  • Data lake

  • Data vault 


We recommend individuals have at least 2 + years of hands-on Snowflake Practitioner experience in an Architect role prior to attempting this exam. The exam will assess skills through scenario based questions and real world examples. As preparation for this exam, we recommend a combination of hands-on experience, instructor-led training and the utilization of self-study assets. 

Instructor-Led Course recommended for this exam: 

Free Self Study recommended for this exam: 



Ready to register? Click here for information on scheduling your exam.